PULSE

PULSE

motivation

  • LR-HR image pair
  • MSE loss leads to smooth result
    “ As a result, MSE should not be used alone as a measure of image quality for super-resolution”
  • “the lack of detail in algorithms that rely only on an lp norm cannot be fixed simply by changing the architecture of the network”
  • main idea: use unconditioned GAN to generate SR instead of using conditioned GAN to add details to transform LR to SR

method

传统方法通过减少L1/L2范式来拉近SR与HR之间距离,但距离缩小并非意味着属于真实图像域,论文方法通过讲真实域上图像逐渐拉近HR来生成更具有细节表现的SR

通过使用styleGAN(experiment)来生成真实域上图像,随后通过优化Latent Space来使其DS后与目标LR相似

DS loss

Latent space

experiment

Results

Robustness

conclusion

  • 使用unconditioned GAN解决SR问题
  • 通过真实图片域中优化latent space来逼近HR
  • 实现大倍数超分辨率问题(x64)

   Reprint policy


《PULSE》 by Liangyu Cui is licensed under a Creative Commons Attribution 4.0 International License
  TOC